NASA-CR-192820 ~

§ “Met odology for First Engineering
“Scrlpt Language (ESL) Knowledge Base

Coi O yvea
Ve 52 -l
o — | /573
- | Kumar Peeris LAYy
N o e F== .
! -~ Michel lzygon
5 ¥ 4 L
Barrios Technology, Inc.
N
[+ 9]
-
o December 1, 1992
T -
V) -~ ho!
Woer J c
) vd N o] =
g W W .
X ENC B
528185
[,
Q <P~ e
W>24$ Qo
SJOdC B¢ ,
_39%"¢8 Cooperative Agreement NCC 9-16
Z00+ 0 -~ Research Activity No. SR.02
¥ O 'S [T)
O+ Wt O E
~ERS Y NASA Jchnson Space Center
8 W . w Information Systems Directorate
@ 5’1 ﬁ c th u>; Information Technology Division
N gL 3 C i
>0 m -~
~ O [o)
| D WL @ @
A . L U+
QDWW e O
I DWW m E
. O T d L %
e . N T X O WBO
Tt A 00 QT
E % <2 Vo ¢
FV R Wow [+ a0 P
> | >

Research Institute for Computing and Information Systems
University of Houston-Clear Lake

DRAFT INTERIM REPORT

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information Systems (RICIS) in 1986 to encourage the NASA
Johnson Space Center (JSC} and local industry to actively support research
in the computing and information sciences. As part of this endeavor, UHCL
proposed a partnership with JSC to jointly define and manage an integrated
programof research in advanced data processing technology needed forJSC's
main missions, including administrative, engineering and science responsi-
bilitles. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,
computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS missionis to conduct, coordinate, and disseminate research
and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway affiliates to research and
develop materials, prototypes and publications on topics of mutual interest
to its sponsors and researchers. Within UHCL, the mission is being
implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-
tion, Human Sciences and Humanities, and Natural and Applied Sciences.
RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of
industry.

Moreover, UHCL established relationships with other universities and re-
search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help
oversee RICIS research ani education programs, while other research
organizations are involved via the “gateway” concept.

A major role of RICIS then is to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and informa-
tion sciences. RICIS, working jointly with its sponsors, advises on research
needs, recommends principals for conducting the research, provides tech-
nical and administrative support to coordinate the research and integrates
technical results into the goals of UHCL, NASA/JSC and industry.

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing and
Information Systems by Kumar Peeris of the University of Houston-Clear Lake and Dr.
Michel Izygon of Barrios Technology, Inc. Dr. Rodney L. Bown served as the RICIS
research coordinator.

Funding was provided by the Information Systems Directorate, NASA/JSC through
Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the
University of Houston-Clear Lake. The NASA research coordinator for this activity was
Ernest M. Fridge III, Deputy Chief of the Software Technology Branch, Information
Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and should
not be interpreted as representative of the official policies, either express or implied, of
UHCL, RICIS, NASA or the United States Government.

Research Activity Number:
Subcontract Number:

Task Deliverable Number of
Specific Reference from SOW:

Title of Task:

Subcontractor:

Cooperative Agreement Number:

Principal Investigator:
NASA Technical Monitor:
Type of Report:

Period Covered by Report:

Due Date:

Delivered To:
Box 444

SR.02
103

Knowledge Base Methodology
Methodology for first Engineering
Script Language (ESL)
Knowledge Base

Barrios Technology Inc.
NCC-9-16

Dr. Michel E. Izygon

Ernest M. Fridge III

Draft Interim Report

06/01/92 to 12/01/92

December 31, 1992

RICIS Document Control Department

University of Houston-Clear Lake
2700 Bay Area Boulevard
Houston, Texas 77058-1096

*** FIRST DRAFT ***

INTERIM REPORT:
KNOWLEDGE BASE METHODOLOGY -
METHODOLOGY FOR FIRST ENGINEERING SCRIPT LANGUAGE
(ESL) KNOWLEDGE BASE
by
Kumar Peeris (UHCL) and Michel E. Izygon (Barrios)

Reuse : Background and concepts.

Software Reuse is one of the technologies that is currently
presented as being able to solve the so-called “Software Crisis”. In
this section, we will describe some of the key concepts of this
technology, the different approaches to reusability, some of the
issues related to it, and we will try to present how the Engineering
Script Language (ESL) implement the reuse paradigm.

Reuse Concepts

The primary goal of reusing software components is that
software can be developed faster, cheaper and with higher quality.
Though, reuse is not automatic and can not just happen. It has to be
carefully engineered. For example a component needs to be easily
understandable in order to be reused, and it has also to be malleable
enough to fit into different applications. In fact the software
development process is deeply affected when reuse is being applied.
During component development, a serious effort has to be directed
toward making these components as reusable as possible. This
implies defining reuse coding style guidelines and applying them to
any new component to create as well as to any old component to
modify. These guidelines should point out the favorable reuse
features and may apply to naming conventions, module size and
cohesion, internal documentation, etc... . During application
development, effort is shifted from writing new code toward finding
and eventually modifying existing pieces of code, then assembling
them together. We see here that reuse is not free, and therefore has
to be carefully managed.

Approaches to Reuse

There are two different approaches to reusing software
components: Adaptive Reuse and Compositional Reuse. Their
characteristics are as follow:

» Adaptive Reuse

wx* FIRST DRAFT **x

With this approach,
components are templates or paterns and are changed each time
they are used.
* Compositional Reuse
components are atomic and don’t change when they are used.

Issues / Dilemas
The operational problems of reusability are the following:
e finding components
¢ understanding components
 modifying components
* composing components

When a programmer has to develop a piece of code, the first
thing he does is to look in the library of available components to
check if there is one that matches his needs. This search process
needs to be able to find not only the exact match, but also the “close
enough” type of components if the ideal one does not exist. The
difficulty of this step is directly linked to the breadth of the library
of components. The more specific are the components, the more
numerous they will be in the library, and the more difficult it is to
find the appropriate one. This aspect of the reuse process is dealt
with library systems.

Understanding a component is the next step the programmer
will go through, in order to be able to use properly the component he
found during the search process. If modifications are necessary, i.e. if
the component does not match exactly the need of the programmer,
the understanding is even more important as he will need to enter
into the code and change it. For this understanding process to be
succesful, there needs to be a lot of emphasis on documentation
during design and coding of any reusable component.

Modification of components is the step that seems to be the less
automatizable. The programmer has to do his work at customizing
the component to his needs. The issue that is related to this step is
that we can foresee that many components may be spawned out of a
common root component in order to customize it to the different
needs of different programmers. The only way to prevent the library
to get out of control is to build components that are generic enough
to be applied to many different situation.

Composing components is the step that is completely specific to
the reuse-based software development process. Once all the needed
components have been found, eventually modified, or developed
from scratch, there needs to be a framework where the programmer

]

xx% FIRST DRAFT ***

can specify how to compose these components together to build the
targeted application.

ESL vs Reuse

The ESL concept of Reuse is based on the following principles:
ESL is targeted toward domain specialists who do not have a
sufficient knowledge of Ada programming language to develop code
in their domain. The tool would allow them to graphically develop an
application from the available pieces of code stored in a software
component library. We should point out here, that the ESL system
does not address the issue of developing the elementary components
that are populating the library. It takes as a first assumption that
these components exist, that they are medium to gross grain
components wrtten in Ada, and that they were input in the
knowledge base with the proper amount of information to allow their
retrieval and their correct use. Based on these assumptions, ESL
contains the different mechanisms that allows an application
developer to build the program he needs from the stored
components. Let us now focus on the different parts of ESL:
e The first part of ESL deals with the storage of the components. The
sytem is built on a knowledge base writen in ART-IM. This
knowledge base contains the important information about the
components such as what it does, what the inputs and outputs are, if
the component is composed of other components or if it is an
elementary one.
» The second part of ESL addresses the issue of retrieving a
component. ESL. has a Case Base Reasoning (CBR) engine that allows to
query the library for components having some similarities with the
needed component. The system will present a list of components
belonging to the same class, ordered according to the number of
identical attributes values. The application developer can refine his
query by analysing the closest component, changing the unfit
attributes and then resubmitting the query with the added
information.
* The third part of ESL focus on assembling the retrieved
components in order to build an application. A graphical editor
allows the application developer to graphically link the desired
components.
* The fourth part of ESL is the code generator. From the graphical
representation of the flow of inputs and triggers through the
different components, ESL generates an Ada main program that
contains the calls to the different routines chosen by the user.

il

«*x* FIRST DRAFT ***

1.1 Description of the ESL Reusable method

The Engineering Script Language (ESL) is a language designed to
allow non programming users to write High Order Language (HOL)
programs by drawing directed graphs to represent the program and
having the system generate the corresponding program in HOL. For
the implementation of ESL proposed, the HOL code to be generated
will be Ada.

The building blocks for directed graphs are nodes and connectors.
Nodes are visually represented as labeled icons (e.g., rectangles or
circles) and have input and output ports which are used to receive
produce data. On a graph, an output port from one node may be
connected to an input node on another node via a connector. Visually,
all connectors passing data between two nodes are represented as a
single arrow connecting the icons representing the nodes. In addition,
a graph itself can have input ports and output ports which are
connected to ports or nodes on the graph. Visually, the set of all
graph input ports 1is represented by a single icon on the left of the
editor window. Each arrow from this icon to a node on the graph
represents a group of connectors. Similarly, the set of all graph
output ports is represented visually as a single icon on the right of
the editor window.

Each node on a graph may represent a primitive procedure or
function in the HOL (i.e., a primitive subprogram), an ESL control or
data-passing mechanism, or another graph. When a node is a
primitive subprogram node, the node's ports represent the
subprogram's parameters and, if applicable, its return value.

Node Objects

There are several classes of node objects: the subprogram node,
(which includes procedure-node, function-node, and subgraph-node
objects), the Merge node, the Replicator node, and the control nodes
(If, Select, and Iterator).

A subprogram-node object is used to represent a procedure or
function coded in the HOL or to represent a graph previously created
through the ESL editor. Each subprogram-node object points to a

xx* FIRST DRAFT **x

subprogram object. Subprogram objects are objects visible through
the ACCESS tools panel and included in the ACCESS taxonomy.

Subprogram objects have corresponding ports. Ports of a procedure
or a function object represent parameters of the corresponding
procedure or function or the return value of the function. Ports of a
graph object, called graph ports, are mapped to ports on nodes of the
graph by connector objects.

Implementation Objects

An implementation object contains information about how a
subprogram object is implemented. The merge, replicator, If, Select
and Iterator nodes each have an implicit implementation and do not
have an associated implementation object. There are three classes of
implementation objects.: Inline, seperately compiled procedure, and
package.

Inline implementation objects are appropriate only for graph objects.
This type of implementation means that when a subgraph node is
part of a larger graph for which code is generated, the code
corresponding to the subgraph node is generated online.

Implementation objects whose type is seperately compiled procedure
are valid for all subprogram objects. Such an implementation object
indicates that the subprogram is implemented as a seperately
compiled Ada procedure. For a seperately compiled procedure to be
called by an Ada program, the program must be first "with" the
procedure; then the procedure may be called.

Package implementation objects are valid for subprograms of
procedure or function type. Such an implementation object indicates
that the subprogram has been implemented as a visible function in
an Ada package. For a procedure or function in a package to be called
by an Ada program, the program must first "with" the package; then
the procedure may be called using the "package.procedure"” notation.

Object Hierarchy

*** FIRST DRAFT ***

The following is the hierarchy of objects in ESL system.

subprogram
primitive subprogram
function
procedure
graph
node

subprogram node
primitive subprogram node
procedure node
function node
subgraph node
merge node
replicator node
control node
if node
select node
iterator node
port
graph port
procedure port
function port
node port
connector group
connector
implementation
inline implementation
seperately complied procedure implementation
package implementation
data type

x% FIRST DRAFT **x

Application Developers Ul ESL editor Application Source Code
Library Menus Complete
Catalog ——— Application
Domain_Specifid—™ > - With
— All required
Knowledg{ * — input Data
Engineer O
Reusable Reusable O Application User‘ Ul
Parts + ESL Metadata "
Metadata Subgraph About | Library
Input Catelog
+
i
Knowledge
Engineer ‘
Reusable
Data
Sets |

Fig. 1.1.1 Building an Application Program with the help of a Parts Composition System

Figure 1.1.1 shows the various steps that would be involved in
building a complete application with the help of a Parts Composition
System (PCS), as currently envisioned. A library of procedures (or
more generically, primitives) containing software parts that are
needed by most application programs within the domain of interest
is opened and scanned. If this library contains most of the required
primitives, then the application developer may select to use it;
otherwise, additional libraries may be searched.

Depending on the decisions of the libraries' management
organizations, application developers may or may not be allowed to
create modified versions of primitives in the libraries. However, the
development, organization, and maintenance of these domain-specific
libraries is primarily the responsibility of the software development
engineers and not the job of the application developers, who may
well be aerospace engineers with minimal programming experience.
The software development engineers receive part specifications from
the application developers and provide implementations to populate
required libraries. If well managed, this seperation of roles helps to
limit the amount of domain expertise that the software engineer
must have and also the amount of programming experience that the
application developer must have.

+++ FIRST DRAFT ***

The construction of primitives can be done using the Computer-
Aided Software Engineering (CASE) tools. However, a useful, well-
maintained library of reusable parts consists of more than a
disorganized jumble of parts. A librarian and library tools are clearly
required. A librarian must build and maintain a PCS knowledge base
using tools that extract the necessary metadata from each primitive
(such as input, output, purpose, and constraints) and then catalog this
information with the knowledge base's schemas. The cataloging
process includes the assignment of each primitive to a specific
knowledge base class. Careful development of a meaningful class
structure is essential to the usefulness of the library's catalog and
one of the most challenging tasks of the knowledge engineer. Special
displays may also bo required for some classes of primitives in order
to make the catalog as user friendly as possible. In short, the
knowledge engineer must build an IUI for each domain-specific
library of reusable parts. His/her role is to serve as the intermediary
between the software development engineers and the application
developers.

Once an application developer has selected the most appropriate
domain-specific library of parts, he/she invokes the ESL editor. As
already explained, the ESL editor allows the application developer to
create, modify, store and retrieve graphs that represent applications.
The graphs show the structure of an application and what data
controls and constraints flow between the components (fig.1.1.2) The
components are depicted by boxes called nodes, and the data
controls, and constraints are shown as arrows linking the nodes.
Other structures, also called nodes, allow for merging and replicating
links and for including looping and branching logic. Each component
(box) is either a primitive or a subgraph, which makes possible
hierarchical decomposition. (fig.1.1.2)

With ESL editor, an application developer uses a mouse and pointer
to select menu and palette commands and to select nodes and links
on the screen. In this way, graphs are constructed, modified, and
stored for possible reuse.

*%% FIRST DRAFT **x*

_‘®‘> Initialization
R

N\ ead phase

\XJ input ‘_®L {ei

Simulation

AbOTt e P Stop X ' Tterator

Fig.1.1.2 A typical ESL Graph

Once the graphs representing an application are completed, the
application developer will invoke menu commands to validate the
graph system and to generate the required code in some high order
language, such as Ada. The generated code, in the form of a main
program and subprograms, will then be ready to be compiled and
linked with the object code of the primitives from the domain
specific library(ies). Alternatively, source code templates (such as
Ada generics or even main programs with certain parameters that
must be initialized before compilation) might be generated, if
required.

xx%x FIRST DRAFT ***

ESL graphs will be stored in a knowledge base, where they will be
represented, using a schema system, as objects with attributes. The
ability to store and retrieve ESL graphs implies a need for well-
organized, domain-specific libraries of graphs with good library
catalogs. Just as in the case of the libraries of primitives, a knowledge
engineer will need to create IUI s for the ESL graph libraries.

The internal representation and storage of graphs, the semantic
interpretation and validation of the graphs, and the generation of
code in high order language are done using knowledge-based
technology.

Graph Implementation and Execution

Fig 1.1.4 depicts a typical example graph created using the ESL editor
panel. Each box is an instance of an object. In other words each box is
merely a procedure call or a function call. The iterator node indicates
an iteration at that particular point until a certain condition is
satisfied. INNER_LOOP is a sub graph attatched to the main graph. It
is a seperately edited graph. The sub graph is shown in fig. 1.1.5.

Prior to executing a complete application, the graphs must be
translated to a hign order language (HOL) representation and
subsequently compiled. A graph implementation is an HOL
representation of a hierarchical ESL data flow graph that can be
compiled by a standard HOL compiler for subsequent execution. The
translation process generates the graph implementation by mapping
the features found in the application's graph schemas to predefined

10

*xx% FIRST DRAFT ***

HOL constructs.

i
n
P
u
[get exec ! Set ptr to re Set Evts Get Input -
Get Exec Get End Of Run
Iter
Compute Num of Di Get ExecC .
ITERATE
~
u
t
p
u
£
Set Num De INNER_LOOP Get Inpul Gat Exec
Fig. 1.1.4 An ESL graph example
i
n
e iter
u “
= Check Evnts 1 Get Exec 1 Get End Of Phase u
ITERATI c
P
u
— t
Get Environment Model One Step Check Evnts 2 Get Exce 2 Get End of Phase

Fig. 1.1.5 ESL sub graph for INNER_LOOP

11

x%x FIRST DRAFT *

Generated Code

- Ada code for graph six_dof_driver

with ASDS_Exec_Record_Manager,;
with six_dof_driver_inner;

wth Environment_model;

with Six_Dof_Instantiations;

With state_types;

procedure six_dof_driver is
TEST18 : Boolean := TRUE;
Exect5 : ASDS_Exec_Record_Pointer_type;
Exec20 : ASDS_Exec_Record_Pointer_type;
Num_Diff_Eq16 : Positive;
Exec17 : ASDS_Exec_Record_Pointer_Type;
Exec19 : ASDS_Exec_Record_Pointer_Type;
begin

- Code for node Get Exec 1
Exec15 := Six_DOF_Instantiations.Get_Exec:

-- Code for node Set ptr to rec
ASDS_Exec_Record_Manager.set_pointer_tc_ASDS_EXEC_record(Exec15);

-- Code for node Set Evts
Six_DOF_Instantiations.Sst_Discrete_Events;

— Code for node Get Input 1
Six_DOF_Instantiations.Six_DOF_INPUT.Get_Input;

- Code for node Get Exec 2
Exec19 := Six_DOF_Instantiations.Get_Exec:

- Code for node Get End of Run 1
Test18 := Six_DOF_Instantiations.Get_End_Of_Run(Exec19);

— Code for ITERATE
while (TEST18) loop

-- code for node Compute Num of DEs
Num_Diff_Eq16 := State_Type.Compute_Num_Of_Ditf_Ef;

-~ Code for node Get Exac 3
Exec17 := Six_DOF_Inatantiations.Get_Exec;

— Code for node Set Num DEs
Six_DOF_Instantiations.Set_Num_Diff_Eq(Exec17, Num_Diff_Eq16);

12

% FIRST DRAFT *

- Code for node inner loop
Six_dof_driver_inner;

-- Cade for node Get Input
Six_DOF_Instantiations.six_DOF_Input.Get_Input;

— Code for node Get Exec
Exec20 := Six_DOF_Instantiations.Get_Exec;

- Code for node Get End of Run
TEST18 := Six_DOF_lInstantiations.Get_End_Of_Run(Exec20);
end loop;
end six_dof_driver;

1.2 Description of the FM tool kit applications.

1.3 Methods used to reengineer FM tool kit code to ESL Reusable
Method.

As described in section 1.1, we know that the code generated by a
designed graph in the ESL system, would be either a main program
or a sub program. Also we have mentioned , that a main program or
a sub program can be a single procedure or a function call or a set of
procedure or function calls or a set of procedure and function calls.
In addition, a main program or a sub program can have loop
structures and if-then-else structures. An important point is that,
ESL does not support nested loop structures. This is one of the
limitations provided in the ESL system. Hence, primarily, we need to
realize that, reengineering any application should be done within
this limited ESL framework.

Section 1.2 provides a thorough description of the FM tool kit which
is in question to reengineer within the ESL framework.

Currently FM tool kit said to have eleven applications. These source
code have been developed in Ada. These applications look very
similar. For our "reengineering-for-ESL" purposes, four of these
applications - namely INTRPLAN, IPCAPTUR, BESTIWAY and
POWRSWNG , have been randomly selected. A vital part of the
"reengineering-for-ESL" process is to develop a library of procedures
(or more generally, PRIMITIVES) containing the reusable software

13

#*+ FIRST DRAFT ***

components , so that they can be put together to form a complete
application.

\nalysis of FM-Tool ki licati

Initially, let us consider the two applications INTRPLAN & IPCAPTUR.
The code shown below (Fig. 1.3.1 & Fig. 1.3.2) depicts the main
programs of the above two applications.

with INTRPLEC ; wuse INTRPLEC ;
with INTRPLIO ; wuse INTRPLIO ;

procedure INTRPLAN is

begin
RETRIEVE_PREVIOUS_INPUTS_FROM_DISK ;
LET_USER_EDIT_INPUT_DATA ;
SAVE_EDITED_INPUTS_ON_DISK ;
SET_UP_CONSTANTS_AND_PLANETARY_EPHEMERIDES ;
DISPLAY_DATA_SHELL (NOMINAL_DEPARTURE_DELTA_V } ;
for J in 0..10 loop
COMPUTE_POSITION_AND_VELOCITY_OF_TARGET_PLANET { J) ;
for T in 0..16 locop
COMPUTE_POSITION_AND_VELOCITY_OF_HCME_PLANET (I
COMPUTE_TRAJECTORY_DATA { I,
DISPLAY_VALUE { NOMINAL_DEPARTURE_DELTA_V , I,
CHECK_FCR_INTERRUPT_FROM_KEYBOARD
end loop
end loop
DISPLAY_TRAJECTORY_DATA_OF_INTEREST_TO_USER ;
end H

)
J)
J)

NeNe e e

~

Fig 1.3.1 - Main Program for INTRPLAN

with IPCAPTEC ; wuse IPCAPTEC ;
with IPCAPTIO ; wuse IPCAPTIO ;

procadurs IPCAPTUR is

begin
RETRIEVE_PREVIOUS_INPUTS_FRCM_DISK ;
LET_USER_EDIT_INPUT_DATA ;
SAVE_ELITED_INPUTS_ON_DISK ;
SET_UP_CONSTANTS_AND_PLANETARY_EPHEMERIDES ;
DISPLAY_DATA_SHELL (NOMINAL_DEPARTURE_DELTA_V) ;
foer J in 0..10 locp
CCMPUTE_POSITION_AND_VELOCITY _OF_TARGET_PLANET (J) ;
for T in 0..16 loop

COMPUTE_POSITION_AND_VELOCITY_OF_HOME_PLANET (I) ;

14

*** FIRST DRAFT ***

COMPUTE_TRAJECTORY_DATA (I
DISPLAY_VALUE { NOMINAL_DEPARTURE_DELTA_V , I
CHECK_FOR_INTERRUPT_FROM_KEYBOARD
end locp

end loop

DISPLAY_TRAJECTORY_DATA_OF _INTEREST_TO_USER

end

N %s Ne Ne se we ow

Fig 1.3.2 - Main program for [IPCAPTUR

The two main programs look exactly the same, except for the
different dependent library units. (i.e intrplec & intrplio for
INTRPLAN and ipcaptec & ipcaptio for IPCAPTUR). In ESL terms
these two are non primitives , because they do not have any
computational instructions but a set of module calls. Therefore a
major modification is not required except for the elimination of the
FOR loops. (In ESL, nested looping structures are not allowed.).

A simple solution to this is to incorporate the inner FOR loop in a
separate module and isolate it. Then the two main program
structures will look as follows.

with IPCAPTEC ; wuse IPCAPTEC ;
with IPCAPTIO ; use IPCAPTIO ;

procedure IPCAPTUR is

begin

RETRIEVE_PREVIOUS_INPUTS_FROM_DISK
LET_USER_EDIT_INPUT_DATA
SAVE_EDITED_INPUTS_ON_DISK
SET_UP_CONSTANTS_AND_PLANETARY_EPHEMERIDES

~e he we o Ne N

DISPLAY_DATA_SHELL { TOTAL_DELTA_V }
for J in 0..10 loop
COMPUTE_POSITION_AND_VELOCITY_OF_TARGET_PLANET { J) ;
INNER_LCOP;
end loop ;
DISPLAY_TRAJECTORY_DATA_OF_INTEREST_TO_USER ;
end ;
FIG. 1.3.3a

with INTRPLEC ; wuse INTRPLEC ;
with INTRPLIO ; wuse INTRPLIO ;

15

*** FIRST DRAFT ***

procedure INTRPLAN is

begin

RETRIEVE_PREVIQUS_INPUTS_FROM_DISK
LET_USER_EDIT_INPUT_DATA
SAVE_EDITED_INPUTS_ON_DISK
SET_UP_CONSTANTS_AND_PLANETARY_EPHEMERIDES

LT A TR TR

DISPLAY_DATA_SHELL (NOMINAL_DEPARTURE_DELTA_V)
for J in 0..10 loop
COMPUTE_POSITION_AND_VELOCITY_OF_TARGET_PLANET { J) :
INNER_LOOP;
end loop ;
DISPLAY_TRAJECTORY_DATA_OF_INTEREST_TO_USER ;
end ;
FIG. 1.3.3b

procedure INNER_LOOP is
begin
for I in 0..16 loop
COMPUTE_POSITION_AND_VELOCITY_OF_HOME_PLANET (I)
COMPUTE_TRAJECTORY_DATA (I, 3
DISPLAY_VALUE (TOTAL_DELTA_V , I, J)
CHECK_FOR_INTERRUPT_FROM_KEYBOARD
end loop ;
end INNER_LCOP;

’

P

FIG. 1.3.3¢

The module INNER_LOOP is the newly created module in order to
incorporate the inner FOR loop in the original main program of both
INTRPLAN and IPCAPTUR. As a matter of fact , this new procedure
automatically have become a reusable component. Further, the new
main program is just a set of module calls with one single loop
structure. But the FOR loop must be changed to a WHILE loop as to
fulfil ESL requirements. We have discussed this later in this section.

The above modification is inadequate. Of interest to us is whether,
the modified main programs INTRPLAN and IPCAPTUR can be
represented in an ESL graph. A straight answer is NO. Still we need
to change the outer FOR loop structure. We can think of replacing the
outer FOR loop structure with a WHILE loop structure as ESL
supports WHILE loops. In order to do this, the value of J must be
incremented inside the WHILE loop. This can be implemented with a
simple computational statement like J :=J + 1;

with IPCAPTEC ; use IPCAPTEC ;
with IPCAPTIO ; wuse IPCAPTIO ;

procadurae IPCAPTUR is

16

#x+ FIRST DRAFT *x

LOOP_END : boolean := FALSE;

J : integer := 1;

begin

RETRIEVE_PREVIQUS_INPUTS_FROM_DISK H
LET_USER_EDIT_INPUT_DATA H
SAVE_EDITED_INPUTS_CN_DISK ;
SET_UP_CONSTANTS_AND_PLANETARY_EPHEMERIDES ;

DISPLAY_DATA_SHELL { TOTAL_DELTA_V) ;
while LOOP_END = FALSE loop
COMPUTE_POSITION_AND_VELOCITY_OF_TARGET_PLANET { J) ;
INNER_LOOP;
J = J + 1;

if J > 10 then
LOOP_END := TRUE;
end if;
end loop ;
DISPLAY_TRAJECTORY_DATA_OF_INTEREST_TO_USER ;
end

FIG. 134

The above is the modified main program code for IPCAPTUR.
(Considering the main program of IPCAPTUR is good enough for the
time being). Changing the inner FOR loop into a WHILE loop caused
us to incorporate few other additional statements (FIG. 1.3.5) within
the WHILE loop.

J = J + 1;

if J > 10 then
LOOP_END := TRUE;

end if;

FIG. 1.3.5
Added Computational Statements inside the WHILE loop

The question is whether the modified main program shown in figure
1.3.4 is good enough to construct an ESL graph. Again, a straight
answer is NO. The simple reason is that, there cannot be any
computational statements within a piece of code except for a set of
module calls , to construct the corresponding ESL representation.
Hence a solution is to further decompose the main-program (of
INTRPLAN & IPCAPTUR); meaning, removing the outer FOR loop and
incorporate it in a separate module, and call that module from the
main program. The figure 1.3.7 shows the final picture of the main
program for INTRPLAN and IPCAPTUR.

with IPCAPTEC ; use IPCAPTEC ;
with IPCAPTIO ; wuse IPCAPTIO ;

17

#+* FIRST DRAFT **+

procadure IPCAPTUR is

begin

RETRIEVE_PREVIOUS_INPUTS_FROM_DISK ;
LET_USER_EDIT_INPUT_DATA ;
SAVE_EDITED_INPUTS_ON_DISK ;
SET_UP_CONSTANTS_AND_PLANETARY_EPHEMERIDES ;

DISPLAY_DATA_SHELL (TOTAL_DELTA_V) :

MAIN_LOOP;

DISPLAY _TRAJECTORY_DATA_CF_INTEREST_TQ_USER ;

and ;
FIG. 1.3.6a

with INTRPLEC ; wuse INTRPLEC ;
with INTRPLIO ; use INTRPLIO ;

procedure INTRPLAN is

begin

RETRIEVE_PREVICUS_INPUTS_FROM_DISK
LET_USER_EDIT_INPUT_DATA
SAVE_EDITED_INPUTS_ON_DISXK
SET_UP_CONSTANTS_AND_PLANETARY_EPHEMERIDES

Neome w o we

DISPLAY_DATA_SHELL { NOMINAL_DEPARTURE_DELTA_V)

MAIN_LOCP;

DISPLAY_TRAJECTORY_DATA_OF_INTEREST_TO_USER ;

end ;
FIG. 1.3.6b

where MAIN_LOOP is the newly created procedure to incorporate the
outer loop in the main program(s) (FIG 1.3.7).

procedure MAIN_LOOP is

begin
for J in 1..10 loop
COMPUTE_POSITION_AND_VELOCITY_OF_TARGET_PLANET (J) ;
INNER_LOOCP;
end loop;

end MAIN_LOOP;

FIG. 1.3.7

The final main program(s) is purely a set of module calls and within
ESL requirements. The ESL graphical representation to create the
main program structure is shown in FIG. 1.3.8. '

138

xx% FIRST DRAFT ***

FIG.13.8

ESL Graphical Representation of The Main Program for INTRPLAN
or IPCAPTUR

—I-HAIN_LOOP [-
_I_Display_Data_ShelI

I Setup_Constants_And_Planetary_Ephemerides
| ave_Edited_input_on_disk
l Let_User_edit_input_data

Retrieve_Previous_input_from_disk

M Cco e 0

i

T £ o

The decomposition of the main program(s) caused create two new
procedures INNER_LOOP and MAIN_LOOP. Obviously, these two
procedures have the format of a ESL sub program where, only
module calls are allowed. But first we need to modify the module
MAIN_LOOP. Introduction of a WHILE loop and to have a separate
procedure for the portion shown in fig.1.3.5 would be the main
modifications. Fig. 1.3.9 illustrates the MAIN_LOOP after the
modifications.

procedure MAIN_LOOQP is

LOOP_END : becolean := false;
CONST : integer CONSTANT := 10

begin
while LOOP_END = false loop
COMPUTE_POSITION_AND_VELOCITY_OF _TARGET_PLANET (J)
INNER_LQOOP;
SET_CCNTROL (J, LCOP_END, CONST);
2nd loop;

end MAIN_LOOP;

FIG. 1.3.9

19

#*xx FIRST DRAFT *xx

where SET_CONTROL is another new procedure, created to
incorporate the small portion of code shown in fig. 1.3.5. This is
shown in FIG. 1.3.10

procadure SET_CONTROL(J_IN : integer; DONE : boolean; CONST : integer) is

begin
J_IN := J_IN + 1;
if J_IN > CONST then
DONE := TRUE;
end if;
end SET_CONTROL;

FIG. 1.3.10

The benefit of making this modifications is that the software
component SET_CONTROL is now converted to a reusable module.
Hence this same module can be called by the procedure INNER_LOOP,
by making similar modifications as done for the module MAIN_LOOP.
Fig. 1.3.11 shows the modified procedure INNER_LOOP.

procedure INNER_LOOP is

LOOP_END : boolean := FALSE;

CCNST : integer CONSTANT := 16;

begin

while LOOP_END = FALSE lcop
COMPUTE_POSITION_AND_VELOCITY_OF_HOME_PLANET (I)
COMPUTE_TRAJECTORY_DATA (I, J)
DISPLAY_VALUE { TOTAL_DELTA_V , I, J}
CHECK_FOR_INTERRUPT_FROM_KEYBOARD ;
SET_CONTROL{J, LOOP_END, CONST);
end loop:;
end INNER_LOOP;

FIG 1.3.11

It is now very clear that the two procedures INNER_LOOP and the
MAIN_LOOP are converted into ESL subprograms. Figures 1.3.12 and
1.3.13 illustrate the ESL graphical representation of the two
subprograms.

20

#++ FIRST DRAFT ***

FIG. 1.3.12
The ESL object graph for subprogram MAIN_LOOP

: —J-set_concrol
. il
P iter INNER_LOCP
: loop compute_position_and_velocity_of_target_planet
o
u
t
o)
u
t
FiG. 1.3.13

The ESL object graph for subprogram INNER_LOOP

|

set_control

il

check_for_interrupt_from_keyboard

il

il

i
a [‘ display_value
P iter compute_trajectory_data
u
c loop compute_position_and_velocity_of_home_;planet
o
u
€
P
u
[

The same ESL object graph could be used for BESTIWAY . It is
important to make sure that the user set proper constant values
when modules being called for individual applications. For example,
the contant value passed into the reusable module SET_CONTROL,
must be properly set inside procedures MAIN_LOOP and
INNER_LOOP. i.e values 10 and 16 respectively for INTRPLAN and
IPCAPTUR. Similarly, for BESTIWAY.

21

o

*xxx FIRST DRAFT **x

Comparatively, main program for POWERSWNG looks slightly
different to the main programs of the other three applications. But of
course, many of the modules already modified for reusable purposes
can be used in designing ESL object graph for POWERSWNG. For
POWRSWNG, the following procedure calls, must be added.

COMPUTE_POSITION_AND_VELOCITY_OF_SWINGBY_PLANET
COMPUTE_TRAJECTORY_FOR_FIRST_HELIOCENTRIC_LEG
DISPLAY_VALUEI

DISPLAY_VALUE2
COMPUTE_TRAJECTORY_FOR_SECOND_HELIOCENTRIC_LEG

The following is the ESL graphical representation for POWRSWNG.

FI1G. 1.3.14
ESL Object graph for main program of POWRSWNG

il

_I—MAIN_LOOP

_J—-Display_data_shell

_I~Sec_up_constants_and_planecary_Ephemerides

__[-Save_edited_inputs_on_disk

Let_user_edit_input_data

[N =S « Bie o)
1

Retrieve_previous_inputs_from_disk

22

Disp

l Compute_pesition_and_velocity.

% FIRST DRAFT *

FIG. 1.2.15
The ESL object graph for subprogram MAIN_LOOP

set_control

_ [
I INNER_LOOP
D

i .
n siplay_valuel
P iter Compute_trajectory_for_first_heliocentric_leg
u .
N L compute_position_and_velocity_of_swingby_planat
oop
o
u
t
P
u
t

The ESL object graph for subprogram INNER_LOOP of POWRSWNG

|

SET_CONTROL

il

_I—check_fo r_interrupt_£from_keyboard

l display_value2
-* _I_compu: e_trajectory_data_for_second_heliocentric_leg

lecp computae_position_and_velocity_of_target_planet

U's Bl e BTN
1

oo

(o]

[~ o BN o]

¥

23

*xx% FIRST DRAFT ***

1.3.2 Modifications and Decomposition of Primitives.

In ESL terms, Primitives are the modules that cannot be further
decomposed or modules that are not worth decomposing. For
example the module RETRIVE_PREVIOUS_INPUTS_FROM_DISK is a
repeated module in all four applications in question. Though the
module in POWRSWNG is slightly different to the module in other
three applications, all four modules serve the same purpose. Further
decomposition is out of question. Hence, best option is to have a
single module that serves all four applications, making that a
reusable component. Of course, to build a common reusable module,
modifications are need to be carried out.

Let us look into the modifications that have been done in order to
make this module a reusable component. Originally, not a single
parameter was passed into the procedure. As a major modification,
two new parameters have been introduced namely FILE_NAME of
type string and NAME_IN of type APPLICATION_TYPE.
APPLICATION_TYPE is a user defined type and initially has the
enumerated type values INTRPLAN, IPCAPTURE, BESTIWAY, and
POWRSWNG. NAME_IN passes in the appropriate value based on the
application. FILE_NAME is the data_file name relevant to each
application. In other words the corresponding data_file name for
INTRPLAN is intrplan.get. Similarly others. Inside the module, CASE
and IF_THEN_ELSE structures have been introduced to serve
different application types. (See Appendix I)

Modifications have been made to the following procedures in a
similar manner.

LET_USER_EDIT_INPUT_DATA
SAVE_EDITED_INPUT_ON_DISK
KILL_OUTDATED_INPUT_FILE
DISPLAY_LINE_LEADERS
DISPLAY_FOOTER_LINES

In each one of the above modules, a new input parameter of
APPLICATION_TYPE is introduced. This parameter passes the name
of the application that uses this module into the module. This helps
to serve the needs of each application program. For instance,
POWRSWNG performs a slightly different task in many of the above
modules. Passing in the name of the application helps direct the

24

#xx FIRST DRAFT ***

execution to the specific area within the module where those
different tasks are carried out. (See appendix I)

1.3.3. Packages COMMON_MODULES, DATA_TYPES, DATA_TYPES_SPEC

The packages COMMON_MODULES, DATA_TYPES, DATA_TYPES_SPEC
COMMON_MODULES are the three new packages introduced into the
system. The services provided by these packages are described
below.

Package COMMON_MODULES.

This is a newly created package build to include all the common
reusable procedures and functions. Also this package includes newly
created reusable modules as a result of decomposition. For instance,
the modules described in section 1.3.1 namely MAIN_LOOP,
INNER_LOOP and SET_CONTROL, are residing in package
COMMON_MODULES. Of course there are many more modules residing
in this package, which we will be discussing later in this report.

Package DATA_TYPES.

This is also a newly created package to include all the type
declarations and variable declarations, which are also repeated in all
four applications. However this package includes only the data types
and type declarations that are found in package bodies of all four
application programs.

Package DATA_TYPES_SPEC.
This package is similar to the package DATA_TYPES. This package is

created to include all the data types defined in the specifications of
application programs.

25

«xx FIRST DRAFT ***

It is important to make a note that packages DATA_TYPES and
DATA_TYPES_SPEC are now directly reusable as all the application
programs use these packages.

1.3.4 Further Modifications.

After a thorough analysis of the modules

1. COMPUTE_POSITION_AND_VELOCITY_OF_HOME_PLANET,
2. COMPUTE_POSITION_AND_VELOCITY_OF_TARGET_PLANET,
3. COMPUTE_POSITION_AND_VELOCITY_OF_SWINGBY_PLANET,

it was found that these modules are very similar and perform the
same task. Therefore, it is obvious that, from these three modules a

single reusable module can be built.
procedure COMPUTE_POSITION_AND_VELOCITY_OF_HOME_PLANET (I : integer) is
DT_SECS : FLOTE ;

begin
JDATE(HOME) := NOM_JDATE(HOME) + LONG_FLOTE(I-8) * INTERVAL(HOME) ;
DT_SECS := 86400.0 * FLOTE(JDATE(HOME) - PER_IDATE(HOME))
PROPAGATE_POSITION_AND_VELOCITY_THRU_TIME (
PER_HELIPOS(HOME) , PER_HELIVEL(HOME) , DT_SECS , GM_SUNp(HOME) ,
HELIPOS(HOME), HELIVEL(HOME))
FIG. 1.3.17

end

procedure COMPUTE_POSITION_AND_VELOCITY_OF_TARGET_PLANET (J : integer) is

DT_SECS : FLOTE ;

begin
JDATE(TARG) := NOM_JDATE(TARG) + LONG_FLOTE(J-5) * INTERVAL(TARG) ;
DT_SECS 1= 86400.0 * FLOTE(JDATE(TARG) - PER_JDATE(TARG))

PROPAGATE_POSITION_AND_VELOCITY_THRU_TIME (
PER_HELIPOS(TARG) , PER_HELIVEL(TARG) , DT_SECS , GM_SUNpP(TARG) ,
HELIPOS(TARG), HELIVEL(TARG))
end ;

26

*#*x*x FIRST DRAFT ***

FIG. 1.3.18

procedure COMPUTE_POSITION_AND_VELOCITY_OF_SWINGBY_PLANET (J : integer) is

DT_SECS: FLOTE;

begin
JOATE(SWBY) := NOM_JDATE(SWBY) + LONG_FLOTE(J-5) * INTERVAL(SWBY) ;
DT_SECS := 86400.0 * FLOTE(JDATE(SWBY) - PER_JDATE(SWBY)) ;

PROPAGATE_POSITION_AND_VELOCITY_THRU_TIME (
PER_HELIPOS(SWBY) , PER_HELIVEL(SWBY), DT_SECS, GM_SUNp(SWBY),
HELIPOS(SWRY), HELIVEL{SWBY) Y
end ;

FIG. 1.3.19

Shown above are the three procedures found in all four applications.
As we have said earlier, simply these modules do the same task
except for a few minor differences. The module shown below is a
procedure built in order to perform all three tasks, and is reusable.

procedure COMPUTE_POSITION_AND_VELCCITY OF_PLANET (I : integer;
PLANET : PLANET_TYPE;
NAME : APPLICATION_TYPE) is
DT_SECS : FLOTE ;
TEMP : TRAG_NODE ;
COUNTER : integer;

begin
case PLANET is
when TARGET | target => TEMP := TRAG;
if NAME = POWRSWNG then
COUNTER := I ~ 6;

else
COUNTER := I - 5;
end if;
when HOME | home =z> TEMP := HOME;
COUNTER := I - 8;
when SWNGBY | swngby => TEMP := SWBY;
COUNTER := I - &
when others => null;
end case;
if NAME = POWRSWNG AND DESTINATION = SWNGBY then
JDATE (TEMP) := NOM_JDATE(TEMP);
else
JDATE (TEMP) := NOM_JDATE{TEMP) + LONG_FLOTE {COUNTER) * INTERVAL {TEMP)
end if;
DT_SECS ;= 86400.0 * FLOTE{ JDATE(TEMP) - PER_JDATE(TEMP) }

PROPAGATE_POSITION_AND_VELCCITY_THRU_TIME (
PER_HELIPOS{TEMP) , PER_HELIVEL{TEMP) , DT_SECS , GM_SUNp(TEMP) ,

27

*xx FIRST DRAFT ***

HELIPOS(TEMP) HELIVEL (TEMP))
end COMPUTE_20SITION_AND_VELOCITY_OF_PLANET;
FIG. 1.3.20

This new procedure is named COMPUTE_POSITION_AND_VELOCITY
_OF_PLANET, and have three new parameters namely I of type
integer, DESTINATION of type DESTINATION_TYPE and NAME_IN of
type APPLIATION_TYPE. DESTINATION_TYPE is also a user defined
type and it defines the destination (HOME, TARGET or SWINGBY).
APPLICATION_TYPE is the same type described earlier.

At this point, it is important to make a note that, creating a new
module by the name COMPUTE_POSITION_AND_VELOCITY
_OF_PLANET will change the corresponding object name in ESL object
graph shown in section 1.3.2

FIG. 1.3.21
The ESL object graph for subprogram MAIN_LOOP

>
; il
set_control
n _l_
F iter, INNER_LCCP
u
¢ loop compute_position_and_velocity_of _planet

[=l o TN o SN~ o}

28

#xx FIRST DRAFT ***

FIG. 1.3.22
The ESL object graph for subprogram INNER_LOOP

—I‘ ”J—set_concrol

—J‘ check_£for_interrupt_from_keyboard
i
a display_value
P iter computa_trajectory_data
u
€ loop compute_position_and_velocity_of planet
[°)
u
c
P
u

Similarly the object names
compute_position_and_velocity_of_home_planet
compute_position_and_velocity_of_target_planet
compute_position_and_velocity_of_swingby_planet

in figures 1.3.15, 1.3.16 and 1.3.18 for POWRSWNG will change
accordingly.

1.3.5 Modification of procedure COMPUTE_TRAJECTORY_DATA

Compute_trajectory_data is a another procedure available in all four
applications. A thorough analysis revealed that this procedure is an
ideal module to decompose and convert into a ESL sub program.
Decomposition had to be done so that the grains (decomposed
components) could be reused in other similar modules throughout
the applications. One major change made in reengineering this
module is to eliminate exception handlers. May be this looks very
inappropriate, but elimination of exception handlers was necessary
to convert this module into a ESL sub program. We know that in ESL
a sub program allows only a set of procedure or function calls . Also
we need to realize that all these changes must be done having ESL in
mind. At this point we need to think of how to tackle the granularity
problem. i.e how big a grain is ?. The reason is that, when

29

%+ FIRST DRAFT **x

decomposing the module, very small grains of size one, two or three
lines remains within the module. In ESL terms, we cannot leave them
within a module. We are forced to eliminate them and reside them in
seperate modules.

Let us take a look at how decomposition was done. FIG. 1.3.23

shows decomposed grains by drawing lines in between. Each grain is
residing in a procedure with a appropriate procedure name.

procedura COMPUTE_TRAJECTORY_DATA (I, J : integer) 1is

TOO_FAST : exception ;

TOO_HOT : exception ;

SINFAC : FLOTE ;

TEST_VEC : VECTOR ;

TF_DAYS : FLOTE ;
begin

-- ZXCEPTION_HANDLER_10001---------—--
TF_DAYS := FLOTE(JDATE(TARG) - JDATE(HOME)) ;
if abs({ TF_DAYS) <= 20.0 then

raise TOQO_FAST ;

end if H
-- CALCULATIONS - ==-ccmcrmmccrmmn e e
{f TF_DAYS > 0.0

then DEP := HOME H

else DEP := TARG ;

end if H
if DEP = HOME

then ARR := TARG

else ARR := HOME

end if

TF_SECS := 86400.0 * abs(TF_DAYS)
ANGMO_PREF := HELIPOS(DEP) * HELIVEL(DEP)
TEST_VEC ;= HELIPOS(DEP} * HELIPOS(ARR) ; -- * gives cross product
if TEST_VEC & ANGMO_PREF < 0.0 -- & gives dot product
then SINFAC := -ABS{ TEST_VEC)
else SINFAC := +ABS{ TEST_VEC)

B

end if
XFR_ANG := FULL_REVS*TWOPI + ATANL(SINFAC, HELIPOS(DEP}&HELIPOS(ARR))
DVALUE (HELIOCENTRIC_TRANSFER_ANGLE) (I,J} := DATA_MATRIX_INTEGER(
DEGPERRAD * XFR_ANG) ;
DVALUE(FLIGHT_TIME }(I,J)} := DATA_MATRIX_INTEGER(TF_DAYS) H

-- CALL_FOR_EXCEPTION_HANDLER_10003
if (FULL_REVS > 0 } and (SMA_SIZE /= BEST_SIZE) then
SOLVE_LAMBERT_PROBLEM { HELIPOS({DEP), TF_SECS, HELIPOS({ARR),
ANGMO_PREF, XFR_HELIVEL({DEP), XFR_HELIVEL(ARR},
GM_SUN , FULL_REVS, BEST_SIZE) ;
end if ;
-- EXCEPTION_HANDLER_10002------wew==-
if ARRIVAL_SPEED_PENALTY > 0.0 then
raise TOO_HOT H
end if

xxx FIRST DRAFT ***

COMPUTE_HELICOCENTRIC_TRAJECTCRY_DATA (I
COMPUTE_PLANETOCENTRIC_DEPARTURE_DATA ({ I
COMPUTE_PLANETOCENTRIC_ARRIVAL_DATA (I

pragma page ;

exception
when TOO_FAST =>
for KIND in DATA_KIND loop
DVALUE({ KIND)(I,J) := 10001
end loop
when TOO_HOT =>
for KIND in MULTIREV_SEMIMAJOR_AXIS..APHELION_DISTANCE loop
DVALUE({ KIND) (I,J) := 10002 ;
end loop ;
when LAMBERT_Z_ITERATION_FAILED_TO_CONVERGE =>
for KIND in MULTIREV_SEMIMAJOR_AXIS..APHELION_DISTANCE loop
DVALUE(KIND }(I,J) := 10003 5
end loop ;
when LAMBERT_CANNOT_ATTAIN_SPECIFIED_NUMBER_OF_REVS =>
for KIND in MULTIREV_SEMIMAJCR_AXIS..APHELICN_DISTANCE loop
DVALUE(KIND }({I,J) := 10004 :
end loop H

end ;

FIG. 1.3.23

All exceptions are handled within the same module where the
exception is raised. For example , consider the newly created
procedure EXCEPTION_HANDLER_10001. The exception is raised if
the absolute value of TF_DAYS is less than or equal to 20.0. The
module is reengineered in such a way that the sequence of
instructions that are to be executed the moment this execption is
raised are within the same procedure itself. This is illustrated in FIG.
1.3.24,

Procedure EXCEPTION_HANDLER_10001(TF_DAYS : flotz2; DONE : booclean; NAME : in
APPLICATION_TYPE; CATEGORY : CATEGORY_TYPE) IS

Begin
if NAME = POWRSWNG then
if CATEGORY = LEG1l then
TF_days := flote(Jdate(SWBY) - JDATE(HCME});
if abs(TF_DAYS) <= 20.0 then
for kindl in LEGI_HELIOCENTRIC_TRANSFER_ANGLE..LEGI_FLIGHT_TIME loop
VALUEL (KIND1) (J) := 10001;
end loop;
end if;
DONE := true;
elsif CATEGORY = LEG2 then
TrF_days := flote(Jdate(TRAJ) - JDATE(SWBY));
if abs(TF_DAYS) <= 20.0 then

31

% FIRST DRAFT ***

for kindl in LEG2_HELIOCENTRIC_TRANSFER_ANGLE..LEG2_FLIGHT_TIME loop
VALUE2 (KIND2) (I,J) := 10001;
end loop;
end if;
DONE := true;
end if;

else
TF_days := flote({Jdate(TRAG) - JDATE(HOME));
if abs{TF_DAYS) <= 20.0 then
for kind in DATA_KIND loop
DVALUE (KIND) (I,J) := 10001;

end loop:;
DONE := true;
end if;
end if;

end IXCEPTION_HANDLER_10001;

FIG. 1.3.24

The variable TF_DAYS should be passed-in from the module
COMPUTE_TRAJECTORY_DATA because it is declared inside that
module. Moreover, three new parameters NAME_IN, CATEGORY and a
boolean variable DONE are passed into the module. CATEGORY is of
user defined type CATEGORY_TYPE and have elements (LEGI and

LEG2).

In the original code of this module, once the exception is raised, the
execution is passed to the area where the exception is defined. Once
that area is executed, the control will transferred to the end of the
module. In the reengineered module, this is handled by a if-then-
else structure. We have selected to introduce an if-then-else

structure because ESL supports such structures. Hence

reengineered procedure COMPUTE_TAJECTORY_DATA will have the

following format and is a sub program within ESL requirements.

procadure COMPUTE_TRAJECTCRY_DATA { I, J : integer) is

SINFAC : FLOTE ;

TEST_VEC : VECTOR ;

TF_DAYS : FLOTE ;

DONE_1, DONE_2, DONE_3 : boolesan := false;
DESTINATION_D : DESTINATION_TYPE := DEPARTURE;

DESTINATION_A : DESTINATION_TYPE:= ARRIVAL;
NAME : APPLICATION_TYPE:= INTRPLEC;
CATEGORY := DUMMY;

begin
EXCEPTION_HANDLER_10001 (TF_DAYS,DONE_1, NAME , CATEGCRY);
if DCNE_1 = false then
CALCULATIONS (TF_DAYS, SINFAC, TEST_VEC);
FIND_BEST_TRANSFER_TRAJECTORY;
CALL_FOR_EXCEPTION_HANDLER_10003_10004 {DONE_2, CATEGORY, NAME) ;

32

«/

#+* FIRST DRAFT **x

Lf DONE_2 = false then
EXCEPTION_HANDER_10002 (DONE_3, NAME);
1f DONE_3 = true then
COMPUTE_HELIQCENTRIC_TRAJECTORY_DATA{ I, J, NAME);
COMPUTE_PLANETOCENTRIC_ARRIVAL_OR_DEPARTURE_DATA(I, J, DESTINATION_D, NAME);
COMPUTE_PLANETOCENTRIC_ARRIVAL_OR_DEPARTURE_DATA(I, J, DESTINATION_A, NAME)
end if;
end if;
end if;
end CCMPUTE_TRAJECTORY_DATA;

FI1G.1.3.25

The corresponding ESL object graph diagram for the above sub
program is shown in fig. 1.3.26.

FIG.1.3.26
ESL OBJECT DIAGRAM FOR THE SUB PROGRAM COMPUTE_TRAJEC1

il ‘
COMFPUTE_PLAL

COMPUTE_HELIOCENTRIC_T

l —O'J—EXCEPTION_AH LER_10002

CALL_FOR_EXCIPTICON_HANDLER_1400C3_10004

'J— FIND_BEST_TRANAFER_TRAJECTORY
CALCULATIONS

EXCEPTION_HANDLER_10001

acdad Do
I

The ESL object graphs of the same sub program in BESTIWAY and
POWRSWNG are slightly different to the above. The graph shown
above is the ESL object graph for INTRPLAN. The ESL object graph
for IPCAPTUR is almost the same except for less one procedure call(
i.e exception_handler_10002).

33

***¥ FIRST DRAFT ***

In the original program code for the procedure
COMPUTE_TRAJECTORY_DATA, we see two procedure calls by the
names COMPUTE_PLANETOCENTRIC_DEPARTURE_DATA and
COMPUTE_PLANETOCENTRIC_ARRIVAL_DATA. Since the two
procedures do the same task, we could have one procedure to handle
both situations and building another reusable module.

procedure COMPUTE_PLANETOCENTRIC_DEPARTURE_DATA (I,J : integer) is

DECL : integer
DELV : FLOTE

DV : integer
RASC : integer

VINHAT : VECTOR
VINMAG : FLOTE
VINVEC : VECTOR

NeONe Mo he we N we N

VINF : integer

begin

VINVEC := (XFR_HELIVEL(DEP)-HELIVEL{DEP))*VBASE_MSO_E (DEP) H
VINMAG := ABS(VINVEC) ;
VINHAT := VINVEC / VINMAG ;
DELV := DEPARTURE_VELOCITY_INCREMENT :
DV := DATA_MATRIX_INTEGER(DELV * 100) ;
VINF := DATA_MATRIX_INTEGER/(VINMAG * 100) ;
DECL := ROUND({ ASIN { VINHAT({3)) * 1800 / PI) ;
RASC := ROUND{ ATANL(VINHAT(2) , VINHAT(1)) * 1800 /s PI) ;
DVALUE(NOMINAL_DEPARTURE_DELTA_V I, := DV ; -- dkm/sec
DVALUE{ DEPARTURE_V_INFINITY_MAGNITUDE }{1,3) := VINF ; -- dkm/sec
DVALUE(DEPARTURE_V_INFINITY_DECLINATION)(I,J) := DECL ; -- 0.1 deg
DVALUE({ DEPARTURE_V_INFINITY_RTASCENSION) (I,J} := RASC ; -- 0.1 deg

end ;

FIG. 1.3 27

procedure COMPUTE_PLANETOCENTRIC_ARRIVAL_DATA (I,J : intager) 1

n

DECL : integer
RASC : integer
VINHAT : VECTCR
VINMAG : FLOTE

VINVEC : VECTOR

T T

VINF : integer

SPEED : FLOTE

SPD : integer
begin
VINVEC := (XFR_HELIVEL(ARR)-HELIVEL{ARR))*VBASE_MSO_Z (ARR) ;
VINMAG := ABS({ VINVEC)} H
VINHAT := VINVEC / VINMAG ;

34

x FIRST DRAFT ***

SPEED := SQRT(VESQ(ARR) + VINMAG*VINMAG) ;
SPD := DATA_MATRIX_INTEGER(SPEED * 100 } ;
VINF = DATA_MATRIX_INTEGER (VINMAG * 100 } ;
DECL := ROUND(ASIN (VINHAT(3) } * 1800 / PI) ;
RASC ;= ROUND(ATAN1(VINHAT(2) , VINHAT(l) } * 1800 / PI } ;
DVALUE(ARRIVAL_SPEED W{I,3) := SPD ; -- dkm/sec
DVALUE (ARRIVAL_V_INFINITY_MAGNITUDE MI,J) := VINF ; =-- dkm/sec
DVALUE(ARRIVAL_V_INFINITY_DECLINATION) (I, J} := DECL ; == 0.1 deg
DVALUE(ARRIVAL_V_INFINITY_RTASCENSION }({I,J} :=

RASC ; == 0.1 deg

’

end

FIG. 1.3.28

procedure CCMPUTE_PLANETOCENTRIC_ARRIVAL_OR_DETARTURE_DATA (I,J: integcr;
DESTINATION : DESTINATION_TYPE;
NAME: APPLICATION_TYPE) is

DECL : integer;
RASC : integer;
VINHAT: VECTOR;
VINMAG: FLOTE;
VINVEC: VECTCR;
VINF : integer:
DV_OR_SPD : integer;
TEMP: TRAJ_NODE;
NDDV_OR_AS: ;
DVIM_OR_AVIM: ;
DVID_QR_AVID: ;
DVIR_OR_AVIR;
TOT_DELV: flote;
TOT_DV : integer;

begin
case DESTINATICN is

when DEPARTURE | departure => TEMP := DEP;
when ARRIVAL | arrival => TEMP := ARR;
end case;
VINVEC := (XFR HELIVEL(TEMP)- HELIVEL(TEMP)) *VBASE M50 E(TEMP);
VINMAG := ABS(VINVEC) ;
VINHAT := VINVEC / VINMAG;

if DESTINATION = DEPARTURE then
DELV OR SPEED := DEPARTURE VELOCITY INCREMENT;
if NAME = IPCAPTURE then
TOT_DELV := ARRIVAL_VELOCITY_INCREMENT + DELV_OR_SPEED;
TOT_DV := DATA_MATRIX_INTEGER(TOT_DEV * 100);
end if;

NDDV_OR_AS
DVIM_OR_AVIM

NOMINAL_DEPARTURE DELTA_V;
DEPARTURE_V_INFINITY_MAGNITUDE;
DVID_OR_AVID DEPARTURE_V_INFINITY_DECLINATION;
DVIR_OR_AVIR DEPARTURE_V_INFINITY_RTASCENSION;
elsif DESTINATION = ARRIVAL then
DELV_OR_SPEED := SQRT(VESQ(TEMP)} + VINMEG*V-MEG);
DELV_OR_SPEED := MIN (DELV_OR_SPEED , MAXAVEIMAG({TEMP);
NDDV_OR_AS := ARRIVAL_SPEED;
DVIM_CR_AVIM := ARRIVAL_V_INFINITY_MAGNITUDE;
DVID_OR_AVID := ARRIVAL_V_INFINITY_DECLINATION;
DVIR_OR_AVIR := ARRIVAL_V_INFINITY_RTASCENSION;
end if;

i

DV_OR_SPD := DATA_MATRIX_INTEGER(DELV_OR_SPEED * 10Q0);
VINF := DATA_MATRIX_INTEGER(VINMAG * 100);
DECL := ROUND(ASIN (VINHAT(3) } = 1800/ PI) ;

35

xxx FIRST DRAFT ***

RASC := ROUND({ ATANI(VINHAT(2), VINHAT(I) } * 1800 / PI };
if NAME := IPCAPTURE then
DVALUE(NDDV_OR_AS){I,J) := DV_OR_SPD ; -- dkrn/sec
DVALUE({ NDDV_OR_AS }(I,J} := DV_OR_SPD ; -- dkrn/sec
DVALUE(DVIM_OR_AVIM) (I,J) := VINF ; -- dkrn/sec
DVALUE(DVID_OR_AVID){I,J) :a DECL ; -- 0.1 deg
DVALUE(DVIR_OR_AVIR) (I,J) := RASC ; -- 0.1 deg
cnd if
end;
FIG. 1.3.29

The figures 1.3.27 and 1.3.28 show the two procedures in question.
Fig. 1.3.29 is the modified procedure built to represent both the
procedures shown in figures 1.3.27 and 1.3.28. This procedure
replaces 8 modules in all four applications. And hence, it is reusable.
In order to make this a reusable module, new variables have been
introduced along with the necessary modifications. This procedure
also resides in the package common_modules which is designed to
reside all the newly created, and modified modules.

Procedure COMPUTE_TRAJECTORY_FOR_FIRST_HELIOCENTRIC_LEG,
and COMPUTE_TRAJECTORY_FOR_SECOND_HELIOCENTRIC_LEG are
available only in applications BESTIWAY and POWRSWNG. However
the procedure in POWRSWNG is very similar to the procedure
COMPUTE_TRAJECTORY_DATA in INTRPLAN & IPCAPTURE. Hence this
procedure in POWRSWNG can be replaced by already designed
reusable components and made a seperate ESL object graph (see FIG.
1.2.). But as we have done in earlier cases, these two procedures
in BESTIWAY have been modified and built one single reusable
procedure named COMPUTE_TRAJECTORY_FOR_FIRST_AND_SECOND_
HELIOCENTRIC_LEG. The following figures show the modifications.

procedure COMPUTE_TRAJECTORY_FOR_FIRST_HELIOCENTRIC_LEG is

ANGMO_PREF : VECTOR ;
TF1_DAYS :FLOTE ;
TF1_SECS :FLOTE ;

begin

TFI_DAYS := FLOTE(JDATE(SWBY) - JDATE(DEP))

TF1_SECS := 86400.0 * TF1_DAYS

ANGMO_PREF := HELIPOS(DEP) * HELIVEL(DEP)

SOLVE_LAMBERT_PROBLEM (HELIPOS(DEP), TF1_SECS, HELIPOS(SWBY),
ANGMO_PREF,

XFR_HELIVEL(DEP), XFR_HELIVEL(SWBY), GM_SUN);
ANTE_SWBY_VINVEC := XFR_HELIVEL(SWBY) - HELIVEL(SWBY)

36

*** FIRST DRAFT ***

end ;
FIG. 1.3.31

procedure COMPUTE_TRAJECTORY_FOR_SECOND_HELIOCENTRIC_LEG is

ANGMO_PREF : VECTOR ;
TF2_DAYS :FLOTE ;
TF2_SECS :FLOTE ;

begin

TF2_DAYS := FLOTE(JDATE(ARR) - JDATE(SWBY)) :

TF2_SECS := 86400.0 * TF2_DAYS ;

ANGMO_PREF := HELIPOS(ARR) * HELIVEL(ARR)

SOLVE_LAMBERT_PROBLEM (HELIPOS(SWBY), TF2_SECS, HELIPOS(ARR),
ANGMO_PREF,

XFR_HELIVEL(SWBY), XFR_HELIVEL(ARR), GM_SUN);
POST_SWBY_VINVEC := XFR_HELIVEL(SWBY) - HELIVEL(SWBY) ;
end ;

FIG. 1.3.32

The following is the modified version of the above two modules.

procedure COMPUTE_TRAJECTORY_FOR_FIRST_AND_SECOND_HELICCENTRIC_LEG(CATEGORY :
CATEGORY_TYPE) is

-- THIS IS A REUSABLE COMMON MODULE FOR COMPUTE_TRAJECTORY_FOR_FIRST _HELICCENTRIC_LEG
--& COMPUTE_TRAJECTORY_FOR_SECOND_HELIOCENTRIC_LEG -~
-- CHANGES HAVE BEEN MADE ACCORDINGLY.

ANGMO_PREF : VECTOR ;
TF1_DAYS : FLOTE

begin
if CATEGORY = LEG1l then
TF1I_DAYS := FLOTE(JDATE(SWBY) - JDATE(DEP)) ;
ANGMC_PREF := HELIPOS(DEP) * HELIVEL(DEP) ;

SOLVE_LAMBERT_PROBLEM (HELIPOS({DEP), TF1_DAYS* 36400.0, HELIPOS(SWBY),
ANGMO_PREF, XFR_HELIVEL(DEP}, XFR_HELIVEL{SWBY), GM_SUN);
ANTE_SWBY_VINVEC := XFR_HELIVEL(SWBY} - HELIVEL{SWBY) ;

else
TF1_DAYS := FLOTE(JDATE(ARR} - JDATE({SWBY)) H
ANGMO_PREF := HELIPOS(ARR] * HELIVEL{ARR) ;

SOLVE_LAMBERT_PROBLEM (HELIPOS(SWBY), TF1_DAYS * 86400.0 , HELIPOS(ARR),
ANGMO_PREF, XFR_HELIVEL(SWBY), XFR_HELIVEL({ARR), GM_SUN);
POST_SWBY_VINVEC := XFR_HELIVEL(SWBY) - HELIVEL(SWBY) H

end if;
end

37

#xx FIRST DRAFT **x

1.3.5 Application BESTIWAY

A few modules in BESTIWAY do not match with any of the modules
in either POWRSWNG or INTRPLAN or IPCAPTUR. These modules
canot be made reusable because they are unique only to BESTIWAY.
Therefore the following modules remain same in the application
BESTIWAY.

FIND_BEST_DIRECT_TRANSFER_TRAJECTORY
FIND_BEST_SWING_BY_TRAJECTORY
ISOLATE_UNPOWERED_SWINGBY_SOLUTION
COMPUTE_PLANETOCENTRIC_SWINGBY_TRAJECTORY_DATA

1.3.6 Application POWRSWNG

As in BESTIWAY, POWRSWNG also has a few unique modules that
are used nowhere else. Since these modules cannot be made
reusable, they remain unchanged within the application itself.
Hence the modules

COMPUTE_LEGI_PLANETOCENTRIC_TRAJECTORY_DATA
COMPUTE_LEG2_PLANETOCENTRIC_TRAJECTORY_DATA
COMPUTE_PLANETOCENTRIC_SWINGBY_TRAJECTORY_DATA

remain unchanged.

1.3.7 Module DATA_MATRIX_INTEGER

Module DATA_MATRIX_INTEGER is one common module found in all
four applications. This module can be used in all applications without
any modifications. Therefore this module has been shifted into the
package COMMON_MODULES where all the reusable common modules
reside.

1.3.8 Complete ESL object graphs for all four applications.

This section provides full ESL object graphs for all four applications.

38

NVIJULNI 103 ydead L>uspuadap 109{qo 153

]
n
a4
2
n
o

1T 1T suotan NI wD " wsodwodep 7

1 evo IR O [es esodwodep I]

Z-SNOLLVIND VD wesdosdqns 1oj ydesd wafqo 153

d0OT ¥aANNI wesdoadqgns 10§ ydead 1ofqo 157 a4,

LI 2R - R

Ty vaspAfivncel ey ToTIIURD0 (Y ®IndwoD

T wawp T AroanefwaaT Dy ISy

VLVA AYOLINVEL ™ IMINIDOMTH ILNAWOD Joj ydesd 1afqo 153

[B -

Fsue1d Jo A3 jacTeA"pue U 11 YReod B anduod

1T suaryehores

ETSRO1LINT T I

tox1Iu0s” 388

Rl - A

SNOLLVINDTVD weidoxdgns Joj ydead 1s{qo 157 JOOT NIVIA Weldoidqns o) ydes® 1d2{qo 1§37 a4,

ABTP WO eINANTTBNOTARIT BART ITM

10001 yqipueq uot ydsdxe

vaepTandn T Ipe TesnT e

I v I

SNOTLVIAYTIVD

K300 w3y an3 My wng puy)
0001 £ 001 IS TPUYY uoy VIngam o) T (WD

Znoot T Ten vy uo | ydeoxe

VI T Z05 0 0L DT ST OO TEH BLNINDD

IeenTor T weamu T) o v yep T Aroi08l

207 teaTIIe” {TIuRso e 1 eandwoD
warp e rredep” 10

mrrrmenaymrd 4 myndwod

NVIdY.LNI 30]
VIVA ™ AYOLIANVEL ILNdWOD J0) ydesd 153(qo 153 NVI44LN} Jo wesdosd upews soj ydesd 19[q0 159

(¥ » f ’

ANLIYDdI 30} yded3 L>uapuadap 103(qo 1S3

1T RUO YIRS L DT meoducsep

s e rnotes esodwonep I

Z7SNOLLVIND V) wesdoadgns Joj ydead 1afqo 159

03 v aTu

17U wamp Aioyse{ea 1" DI uedo T8 #indeod

T T Rmavp T Arordeler T oL IR T Y e TviwoD

VIVA ANOLDANVIL ™ JIEINIDONTAH ~3LNdINOD 30§ ydesd 1ofqo 1153

T suoyywinopes

ZTSHOLIN NIV

SNOLLYINDTYD wreadoadqns goj ydesd 310a(qo 753

10001 JqpuveqTuoy Wdeoxe

[- -

SNOLILIVINOTVD

Aa010 w1y I8 eUexY Yeeg pPUIY)
00017 €000 T ISTPURY 10T xS 103 T e I

VIV ANOLMICVEL DTMINEDOT TBH B1NJNCO é.

vItpTRInIIvAsp 10T TRATIIR JT130Rs0euv(d eindwod
I2vAmp " T07 [RAL 2 10T DY TIURICIRUFVf A B INdWOD
' - ¥N14VOdi 40)

VIVQA™R¥0LD3[VIL"3LNdNOD JoJ ydesd 13{qo 153

JesnToyTAaseImu T o e ep T Az o e e L Av [dETa I

L - B - A

amue(d)0 A TD0I PATPUY U T I TR O BINdmOD

VAVIT4OLOBCVEL” BLNMOD l
onyva"Avidetp I

PIeOqAny WOT} TIANIIBIUY T A0S HOBD l

{ox U0 TINe

JOOT ¥:NN] weadoadqns Joj ydead 1a{qo 17 3y,

LA -

dooy
Asued 107 A 100 BA PR ot 3tEod w ndwod

103 3o et

JOOT NIVIN weadordqgns Joj ydes3 153(qo ST Y1,

YeTp mor3 wandur T FnotABrd sART IOy

wiepTInduT A TpeT IRENT 18

NEIP UO I TpRITRe wAYS

2ept IvweIg T ATesete [ATPUYT B U IS0 AN 188

Yt vavp Aetderg

NIV J0 wexdoad upews Jo§ ydesd 123/q0 7183

DHNIMSYMOd 10j ydead A>uapuadap 13fqo 153

LI IR - -

TrTeyvp T Aroanefery Dy nuEso ey B Iindwos

T 1 Ravp T Kroypeleay Dpnuesh T8y windwod

17 VLVG~AJOLDAIVEL™ININIDONBH ELNdINOD o) ydes3 1afqo 153

T0001™ I8Py uoY 1dBOXS

STuSTININOTED> I
vIvp Ty uoTIR RO ed T mecdwosep l

“Axoaoe(wrh o1 usdcInuNd pBey PIndmOD
svormpops 1|

p-ATo 108 (w33 AqBuTmMET DT Nuedossued andwod

DNMSIMOJ 103
DIT DI INFDOITEH "ANODIS ANV ~LSHId ~H04 “AHOLDAIVEL "ILNdINOD J0) ydesd 19fqo 153

LI VRS- Y

Irue(d o~ K120 eA pur uctITROd B IndmoD

DR D ININEDITEH GNOOBS "GNV LSAT 4 ¥Od ™ JAOLOBCVEL ALNIHOD

TonteaT Av1deip I
PIvoqARy moI) TIdnIARIUT T 30T XORYD I
FCERULS e T I

JOOT ¥INN] wesdordgns 3oj ydesd 19(qo 1$q a4.L

0oJeas

e rd” joT oo en pue T uory1eod B andwon

OET I IHINISOL BN ANODBS ANV 1S Ed ™ ¥04 ™ A4OLIACVHL BLAINOD l

dooy

4007 48NNI

103300308

JO0T NIVIN wesdosdqns so) ydesd 133(qo 57 24,

ASTP wor)T eInduTI T enorAvIT eART 110y

waepT IdUY T ITpe 1eenT 3]

NP U E I TP IPeT RARS l

sep | Irweig T lavisuv AT DY T B3R 1E S TdnT 18s

Treys " wIvp Aeidstq

aeued”

DNMSAMOd)0 wesdosd upew Joj ydead 12(q0 159

AVMILSAL Jo] ydes3 f>mapuadap 0afqo 157

d00T ¥ANNI weaBosdans sop ydesd Aqo 153 YL

T rIrp” Kaerdefeny

Tt wmer 1o rrogrsesedmasep
4 Horseseriarsivesertmvarawe (f HO-Q
1703007 R19120L¢ 13721 1 emont {ey"s yndwen
e troteemamsw (L Q)

C3p013 .

Toearp Zregoefesy

L A e e]

AVMILSTH 305
YLV~ A0V L DN INTIOITEH 7 DT ANY™ [D31 HLNAWO) 20) ydesd pafqo 153

JOOT NIV wesSosdqns 1op ydess pafqe 153 3yl

Thoel Tqeury weriduses

EEREEE]

2
1y Rreysefer: o

{rorovtenaTarsvece o rrer pur- ey syndnee

f17wasey rou~roo pur-tee i~ snues

TIPSO SO IV TSRO IAe M SavTErey

AP INPITNIpe 200R Yo l

WA AN e fpuT wang

K Lud i
1o e arpArpdutg

oot A 1y

FevnTer" yrere ey e vary”,

»1mpe S TP

IS A LT VA R DR PSR ARER e |

AVYM11534 201
YAVA™NOLFMWAL TLNO) 20§ ydead 133(qo 153 AVMILS 10 wnsford urews soj ndesd 1afqQ 151

*x#+ FIRST DRAFT ***

2. Lessons Learned About Current ESL Tool

CBR matching window will not help us retrieve components - only
the class structure helps.

Component attributes describing the components are not sufficient
now; particularly, there are no slots for the purpose of the
components.

ESL graphs are similar to DFDs with control flows, but have at least 2
additional constructs: loop and if-then.

Does not address at all the library functions, CM functions, IV & V
functions.

Standards for components ? How can we make a reusable
component? Domain oriented vs. Computer-Science oriented
components.

No facilities for FOR loops except for WHILE loops.

In the ESL system, the looping structures are restricted only to while
loops. This is a severe draw back. It was found that , during the
reengineering process, all the FOR loops in subprograms had to be
changed into while loops. In order to do this more modules had to be
created. One example is an unnecessary module has to be created to
increment the iterated value for the WHILE loop. But if there were
facilities to implement FOR loops, this unnecessary creation of
modules could have been avoided.

Lack of labelling the ESL graph.

Another shortcoming found in the ESL graphs was that the lack of
directional labelling. For example, in an if node, we know that there
are two dirctions, one for THEN and the other for ELSE. The graph
does not show this, and the reader would not know which one is
THEN and which one is ELSE. A situation like this would put the
reader into confusion.

43

x* FIRST DRAFT *

Syntax errors found in generated Ada code.

A few serious syntax errors were found in the generated Ada code.

Errors:

1. When already existing graph is modified, it won't allow you to
exit the sytem without saving it. If you select the delete option, it

will erase the graph from the knowledge base butthe drawing
file.dwg will still exist.

2. Cannot resize the graph editor panel.

3. Connector drawing algorithm too simple. Needs improvements.
Multiple link.

4. Drawing files may not be consistent with the knowledge base.

5. When a node is deleted on the drawing panel, still that object is
shown on "Node on graph" pannel.

44

